Capacity design according to CISC

Capacity design is a part of seismic check and ensures that the joint has sufficient deformation capacity.

The objective of capacity design is to confirm a building undergoes controlled ductile behaviour in order to avoid collapse in a design-level earthquake. Plastic hinge is expected to appear in dissipative item and all non-dissipative items of the joint must be able to safely transfer forces due to the yielding in the dissipative item. The dissipative item is usually a beam in moment resisting frame but it may also be e.g. an end plate. The resistance factor is not used for dissipative items. Two factors are assigned to the dissipative item:

  • Ry = 1.1 – overstrength factor – S16-14, Cl. 27.1.7; editable in materials
  • Cpr = 1.1 – strain-hardening factor – S16-14, Cl. 27.2.2; it is recommended to apply for beam as a dissipative item in moment resisting frame

The material diagram is modified according to the following figure:

The increased strength of the dissipative item allows for the input of loads that cause the plastic hinge to appear in the dissipative item. In the case of moment resisting frame and beam as the dissipative item, the beam should be loaded by My = CprRyFyWpl,y and corresponding shear forceVz = –2 My,Ed / Lh, where:

  • Fy – yield strength
  • Wpl,y – plastic section modulus
  • Lh – distance between plastic hinges on the beam

In case of asymmetric joint, the beam should be loaded by both sagging and hogging bending moments and their corresponding shear forces.

The plates of dissipative items are excluded from check.

Give us feedback. Was this article useful?

Yes No

Related articles

Check of components according to CISC

Become a certified connection design professional

Ready to master analysis, design, and code-check skills of various steel connections for everyday engineering practice? Our online course can help you

Try idea statica for free

Download a free trial version of IDEA StatiCa